If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14t^2-8t=0
a = 14; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·14·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*14}=\frac{0}{28} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*14}=\frac{16}{28} =4/7 $
| 500t=150(t-4) | | 1b+7÷4=9 | | -7x-22=23-4x | | x/7+5=11 | | 6k^2+5k-38=-4 | | 5.9x-7x-5=-1.1x-0.7 | | (2d)+(d-12)=13 | | 5-9x+4x^2=0 | | 3x-4+2x=-1 | | |3x-4|+2x=-1 | | 1/3x2=8/7-5/6x | | 2a-3(a+4)=-3 | | 10=r/4-1 | | -1.5x+5=1.5x-4 | | 10-18x+x^2=0 | | -2x-106=34+5x | | 3m-11=5+m | | 2(7x-3)-9=8x-(2x-5)+10 | | 1/3(g+2)=1 | | -122+x=76-8x | | 17x-18+17x-18=5x | | -41+3x=-x+19 | | 8(8+t)=160 | | -28+9x=63+2x | | 2/3(x+25)+3=5 | | 5a-9=76 | | 2-2a+4a=-6 | | -x-42=18+5x | | (x^2)-3x-1=0 | | r+4-4=6 | | 16t2 = 24 | | 2x+9+3x-1+42=180 |